Reconstruction of Functions on the Basis of Sequences of Linear Functionals

Rumen Kozarev*
Department of Mathematics, University of Sofia, Boulevard James Boucher 5,
1126 Sofia, Bulgaria
Communicated by T. J. Riviin

Received December 2, 1992; accepted in revised form May 27, 1994

The question about a reconstruction of functions from a certain class is studied. The reconstruction is realised on the basis of sequences of linear functionals $l_{n}(f)_{n=1}^{x}$ of the form $l_{n}(f)=\sum_{k=0}^{m(n)} a_{n k} f\left(x_{n k}\right)$. An explicit expression of the reconstructed function is given. 1995 Academic Press, Inc.

1. Introduction

Every function continuous on $[a, b]$ is uniquely determined by its values at a sequence of points $\left\{x_{i}\right\}_{i=0}^{\infty}$ which are dense in $[a, b]$. This is a trivial example showing that there is a sequence of linear functionals, namely $l_{n}(f)=f\left(x_{n}\right), \quad n=0,1, \ldots$, which presents complete information about $f \in \mathbf{C}[a, b]$. In particular, $l_{n}(f)=0$ for each n implies $f \equiv 0$.

Clearly the sequence of divided differences $f\left[x_{0}, x_{1}, \ldots, x_{n}\right], n=0,1, \ldots$ has the same property since the conditions

$$
f\left[x_{0}\right]=f\left[x_{0}, x_{1}\right]=\cdots=f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=0
$$

are equivalent to $f\left(x_{0}\right)=f\left(x_{1}\right)=\cdots=f\left(x_{n}\right)=0$.
Now consider the next more general problem. Suppose that

$$
\mathbf{X}:=\left\{\left(x_{n 0}, x_{n 1}, \ldots, x_{n n}\right), n=0,1, \ldots\right\}
$$

is a given triangular matrix of points in $[a, b]$ such that $\max _{k}\left|x_{n, k+1}-x_{n k}\right|$ $\rightarrow 0$ as $n \rightarrow \infty$. Suppose that $f\left[x_{n 0} ; x_{n 1}, \ldots, x_{n n}\right]=0$ for each n and f from $\mathbf{C}[a, b]$. Does this imply $f \equiv 0$? The question was studied by Eterman [3] in the case $\left\{x_{n k}\right\}_{k=0}^{n}$ are the extremal points of the Chebyshev polynomial $T_{n}(x)$ (i.e. $x_{n k}=\cos (k \pi / n)$). He proved that $f \equiv 0$, provided it has an absolutely convergent Fourier-Chebyshev series. The case $[a, b]=[0,1]$, $x_{n k}=k / n$ is a well-known open problem in approximation theory.

[^0]Note that the condition $f\left[x_{n 0}, x_{n 1}, \ldots, x_{n n}\right]=0$ is equivalent to $e_{n}(f)=0$, where $e_{n}(f)$ is the error of the best uniform approximation of f on the discrete set $\left\{x_{n 0}, x_{n 1}, \ldots, x_{n n}\right\}$ by polynomials from $\pi_{n-1}\left(\pi_{m}\right.$ denotes the set of all algebraic polynomials of degree m). Thus, this observation gives another interesting interpretation of our problem.

The divided difference $f\left[x_{n 0}, x_{n 1}, \ldots, x_{m n}\right]$ is a linear combination of the function values $f\left(x_{n 0}\right), f\left(x_{n 1}\right), \ldots, f\left(x_{n n}\right)$. We study here sequences of linear functionals of the form

$$
l_{n}(f)=\sum_{k=0}^{m(n)} a_{n k} f\left(x_{n k}\right), \quad n=1,2, \ldots
$$

and show some new examples of $\left\{a_{n k}\right\},\left\{x_{n k}\right\}$ which have the property that $l_{n}(f)=0$ implies $f \equiv 0$. Moreover, we give an explicit expression of f on the basis of the information $\left\{l_{n}(f)\right\}_{n=1}^{\infty}$.

2. Construction of the Functionals

Let us denote, as usual, by $T_{n}(x)$ and $U_{n}(x)$ the Chebyshev polynomials of the first and second kind, respectively.

Recall also their generating functions

$$
\begin{array}{lll}
T(x, t)=\sum_{n=0}^{\infty} T_{n}(x) t^{n}=\frac{1-t x}{1-2 t x+t^{2}}, & x \in[-1,1], & |t|<1 \\
U(x, t)=\sum_{n=0}^{\infty} U_{n}(x) t^{n}=\frac{1}{1-2 t x+t^{2}}, & x \in[-1,1], & |t|<1
\end{array}
$$

With every function $f \in \mathbf{C}[-1,1]$ we associate it expansions

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{n}(f) T_{n}(x) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{0}=A_{0}(f)=\frac{1}{\pi} \int_{-1}^{1}\left(1-x^{2}\right)^{-1 / 2} f(x) d x \\
& A_{n}=A_{n}(f)=\frac{2}{\pi} \int_{-1}^{1}\left(1-x^{2}\right)^{-1 / 2} f(x) T_{n}(x) d x, \quad n=1,2, \ldots
\end{aligned}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n}(f) U_{n}(x) \tag{2}
\end{equation*}
$$

where

$$
B_{n}=B_{n}(f)=\frac{2}{\pi} \int_{-1}^{1}\left(1-x^{2}\right)^{1 / 2} f(x) U_{n}(x) d x, \quad n=0,1, \ldots
$$

Introduce the classes:

$$
\begin{aligned}
\mathbf{A T} & :=\left\{f: \sum_{n=0}^{\infty} A_{n} T_{n}(x) \text { is absolutely convergent }\right\}, \\
\mathbf{A U} & :=\left\{f: \sum_{n=0}^{\infty} B_{n} U_{n}(x) \text { is absolutely convergent }\right\}, \\
\mathbf{A T}_{\varepsilon} & :=\left\{f: A_{n}=O\left(n^{-1-\varepsilon}\right)\right\}, \\
\mathbf{A U}_{\varepsilon} & :=\left\{f: B_{n}=O\left(n^{-1-\epsilon}\right)\right\} .
\end{aligned}
$$

We study here the linear functionals

$$
\begin{align*}
E_{n}(f) & =\frac{1}{n} \sum_{m=0}^{n}(-1)^{m} f\left(\cos \frac{m \pi}{n}\right), \quad n=1,2, \ldots \tag{3}\\
I_{n}(f) & =\frac{1}{n} \sum_{m=0}^{n-1}(-1)^{m} \sin \frac{(2 m+1) \pi}{2 n} f\left(\cos \frac{(2 m+1) \pi}{2 n}\right), \quad n=1,2, \ldots \\
L_{n}(f) & =\frac{2}{n} \sum_{m=0}^{[n / 2]} f\left(\cos \frac{2 m \pi}{n}\right), \quad n=1,2, \ldots \tag{4}\\
M_{n}(f) & =\frac{2}{n} \sum_{m=0}^{[i n-1 / 1 / 2]} f\left(\cos \frac{(2 m+1) \pi}{n}\right), \quad n=1,2, \ldots \tag{6}\\
P_{s, n}(f) & =\frac{1}{s n} \sum_{m=0}^{[m n / 2]} a_{m} f\left(\cos \frac{2 m \pi}{s n}\right), \tag{7}
\end{align*}
$$

where $s \geqslant 2$ is a positive integer,

$$
\begin{align*}
a_{m} & =\left\{\begin{array}{lll}
2(s-1), & \text { if } & s \mid m \\
-2, & \text { if } & s \nmid m
\end{array}, \quad n=1,2, \ldots\right. \\
R_{s, n}(f) & =\frac{4}{s n} \sum_{m=0}^{[s n / 2]} \cos \frac{2 m \pi}{s} f\left(\cos \frac{2 m \pi}{s n}\right), \tag{8}
\end{align*}
$$

where $s \geqslant 2$ is a positive integer, $n=1,2, \ldots$
The asterisk on the summation sign means that the terms with $f(1)$ or $f(-1)$ are to be halved. We shall also use the notation Σ^{s}, which means that the summation index skips all multiples of s.

Theorem 1. If $f \in \mathbf{A T}, g \in \mathbf{A U}$, then

$$
\begin{align*}
& E_{n}(f)=\sum_{m=0}^{\infty} A_{(2 m+1) n} \tag{9}\\
& I_{n}(g)=\sum_{m=0}^{\infty}(-1)^{m} B_{(2 m+1) n-1} \tag{10}\\
& L_{n}(f)=\sum_{m=0}^{\infty} A_{m n} \tag{11}\\
& M_{n}(f)=\sum_{m=0}^{\infty}(-1)^{m} A_{m n} \tag{12}\\
& P_{s, n}(f)=\sum_{m=1}^{\infty} A_{m n} \tag{13}\\
& R_{s, n}(f)=A_{n}+\sum_{m=1}^{\infty} A_{(m s \pm 11 n} \tag{14}
\end{align*}
$$

Proof. Some of these relations are known. See, for example, a simple proof of (9) in [6, p. 93 and p. 174]. We use here another new approach which makes it possible to establish relations of this kind. We give a detailed proof of (9) only.

Denote by u and v the zeros of the polynomial $p(t)=t^{2}-2 t x+1$, where x is a parameter from $[-1,1]$. Then $T(x, t)$ may be written in the form

$$
T(x, t)=-\frac{1}{2}\left(\frac{u}{t-u}+\frac{v}{t-v}\right)
$$

After the transformation $x=\cos \theta, \theta \in[0, \pi]$ the zeros become $u=\cos \theta+$ $i \sin \theta$ and $v=\cos \theta-i \sin \theta$. Denote

$$
x_{m}:=\cos \frac{m \pi}{n}, \quad u_{m}:=\cos \frac{m \pi}{n}+i \sin \frac{m \pi}{n}, \quad v_{m}:=\cos \frac{m \pi}{n}-i \sin \frac{m \pi}{n}
$$

Apply first the functional E_{n} to the function $T(\cdot, t)$.

$$
\begin{aligned}
E_{n}(T(\cdot, t)) & =\frac{1}{n} \sum_{m=0}^{n}(-1)^{m} T\left(x_{m}, t\right) \\
& =\frac{1}{n} \sum_{m=1}^{n-1}(-1)^{m} T\left(x_{m}, t\right)+\frac{1}{2 n}\left(T\left(x_{0}, t\right)+(-1)^{n} T\left(x_{n}, t\right)\right) \\
& =-\frac{1}{2 n} \sum_{m=1}^{n-1}(-1)^{m}\left(\frac{u_{m}}{t-u_{m}}+\frac{v_{m}}{t-v_{m}}\right)+\frac{1}{2 n}\left(\frac{1}{1-t}+\frac{(-1)^{n}}{1+t}\right) \\
& =-\frac{1}{2 n} \sum_{m=0}^{2 n-1}(-1)^{m} \frac{u_{m}}{t-u_{m}}
\end{aligned}
$$

because $v_{m}=u_{2 n-m}$. The last sum is a rational function with a denominator $t^{2 n}-1$, because $\left\{u_{m}\right\}_{m=0}^{2 n-1}$ are the $2 n$th roots of the unity. Denote by $\varphi(t)$ the numerator of this rational function. Clearly $\varphi \in \pi_{2 n-1}$. We have

$$
\frac{\varphi(t)}{t^{2 n}-1}=-\frac{1}{2 n} \sum_{m=0}^{2 n-1}(-1)^{m} \frac{u_{m}}{t-u_{m}}
$$

and therefore

$$
\varphi(t)=-\frac{1}{2 n} \sum_{n=0}^{2 n-1}(-1)^{m} u_{m} \frac{t^{2 n}-1}{t-u_{m}} .
$$

In particular, for $t=u_{t}$

$$
\begin{aligned}
\varphi\left(u_{l}\right)= & -\left.\frac{1}{2 n}(-1)^{\prime} u_{l} \frac{t^{2 n}-1}{t-u_{i}}\right|_{t=u_{l}} \\
= & -\frac{1}{2 n}(-1)^{\prime} u_{l}(2 n) u_{l}^{2 n-1}=(-1)^{t+1}=-u_{l}^{\prime \prime} \\
& \quad l=0,1, \ldots, 2 m-1
\end{aligned}
$$

Since $\varphi(t)$ is determined uniquely by its values at $\left\{u_{i}\right\}_{\}_{=0}^{2 n-1} \text {, we obtain }}$ $\varphi(t)=-t^{n}$. Hence

$$
E_{n}(T(\cdot, t))=\frac{t^{n}}{1-t^{2 n}}=\sum_{m=0}^{\infty} t^{(2 m+1) n}
$$

On the other hand, since E_{n} is bounded and therefore continuous functional, it follows from the expression of the generating function of $T_{n}(x)$ that

$$
E_{n}(T(\cdot, t))=\sum_{j=0}^{\infty} t^{j} E_{n}\left(T_{j}(x)\right)
$$

Therefore

$$
E_{n}\left(T_{j}(x)\right)= \begin{cases}1, & \text { if } j=(2 m+1) n \\ 0, & \text { otherwise }\end{cases}
$$

Finally, applying E_{n} to (1) we get

$$
E_{n}(f)=E_{n}\left(\sum_{k=0}^{\infty} A_{k} T_{k}(x)\right)=\sum_{k=0}^{\infty} A_{k} E_{n}\left(T_{k}(x)\right)=\sum_{m=0}^{\infty} A_{(2 m+1) n}
$$

3. Main Results

We solve here the reconstruction problem on the basis of the functionals (3)-(7). Our method uses the properties of the Möbius function $\mu(n)$. Let us recall that $\mu(n)$ is defined in the following way:

$$
\begin{aligned}
& \mu(1)=1 \\
& \mu(n)=0, \quad \text { if } \quad p^{2} \mid n, \quad p \text { is prime } \\
& \mu(n)=(-1)^{m}, \quad \text { if } \quad n=p_{1} p_{2} \cdots p_{m},
\end{aligned}
$$

p_{i} are distinct primes, $\quad i=1,2, \ldots, m$.
It is known that

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1, & \text { if } n=1 \\ 0, & \text { otherwise }\end{cases}
$$

The proof may be found in [7, p. 27].
Introduce the arithmetic function v by the equalities

$$
\begin{aligned}
v(1) & =-1 \\
\sum_{d \mid n} v(d)(-1)^{n / d} & =0, \quad n=2,3, \ldots
\end{aligned}
$$

For each positive integer n denote

$$
a(n):=\text { the highest power of } 2, \text { which divides } n \text {, }
$$

$$
r(n):=\frac{n}{2^{a(n)}} .
$$

A simple consequence from [1, Lemma 6] is that

$$
v(n)=-2^{\alpha(n)-1} \mu(r(n))
$$

(under the convention that $2^{-1}=1$).

Theorem 2. Let $f \in \mathbf{A} \mathbf{T}_{\varepsilon}$. The functionals $\left\{L_{n}(f)\right\}_{n=1}^{\infty}$ and A_{0} determine f uniquely. Moreover

$$
\begin{equation*}
f(x)=A_{0}+\sum_{j=1}^{x}\left(L_{j}(f)-A_{0}\right) \sum_{k \mid j} \mu(k) T_{j ; k}(x) . \tag{15}
\end{equation*}
$$

Proof. Putting $L_{n}:=L_{n}(f)$ and $L_{n 0}:=L_{n}-A_{0}$, for convenience, one may write (II) as

$$
\begin{equation*}
L_{n 0}=\sum_{m=1}^{\infty} A_{m n}, \quad n=1,2, \ldots \tag{16}
\end{equation*}
$$

which is an infinite linear system with respect to $\left\{A_{n}\right\}_{n=1}^{\infty}$. We shall show that the homogeneous system $\sum_{m=1}^{\infty} A_{m n}=0$ admits only the trivial solution.

Let $M=p_{1} p_{2} \cdots p_{l}$ be the product of the first $/$ primes. Then,

$$
\begin{aligned}
0 & =\sum_{d \mid M} \mu(d) \sum_{m=1}^{\infty} A_{m d n}=\sum_{j=1}^{\infty} A_{j n} \sum_{\substack{d|M \\
d| j}} \mu(d) \\
& =\sum_{j=1}^{\infty} A_{j n} \sum_{\substack{d \mid \delta \\
d=(j, M)}} \mu(d)=\sum_{\substack{j=1 \\
(j, M)=1}}^{\infty} A_{j n}
\end{aligned}
$$

(we used the change $m d=j$ in the second equality).
Hence

$$
0=A_{n}+\sum_{\substack{j=p_{i+1} \\(j, M)=1}}^{\infty} A_{j n}
$$

and consequently

$$
\left|A_{n}\right| \leqslant \sum_{\substack{j=p_{++1} \\(j, M)=1}}^{\infty}\left|A_{j n}\right| \leqslant \sum_{j=p_{i+1}}^{\infty}\left|A_{j}\right| .
$$

Letting $l \rightarrow \infty$ we conclude that $A_{n}=0$.
So if the system (16) has a solution it must be unique. We prove next that this solution is given by the expression

$$
A_{n}=\sum_{k=1}^{\infty} \mu(k) L_{k n 0}
$$

Note first that the series is absolutely convergent. Indeed,

$$
\sum_{k=1}^{\infty}|\mu(k)|\left|L_{k n 0}\right| \leqslant \sum_{k=1}^{\infty}\left|L_{k n 0}\right|
$$

and since

$$
\left|L_{k n 0}\right| \leqslant \sum_{m=1}^{\infty}\left|A_{m k n}\right| \leqslant C_{1} \sum_{m=1}^{\infty} \frac{1}{(m k n)^{1+c}}=C_{2} \frac{1}{(k n)^{1+\varepsilon}}
$$

with some constants C_{1}, C_{2}, the series is evidently convergent. Now inserting the expression of A_{n} in (16) we get

$$
\sum_{m=1}^{\infty} \sum_{k=1}^{\infty} \mu(k) L_{k m n 0}=\sum_{j=1}^{\infty} L_{j n 0} \sum_{k \mid j} \mu(k)=L_{n 0} .
$$

which shows that it is a solution. This proof will be complete if we show that the change of the order of the summation is correct. But this is a consequence of the fact that any of the series in the last equality is absolutely convergent. Let us prove, for example, that $\sum_{j=1}^{x} L_{j n 0} \sum_{k \mid j} \mu(k)$ is absolutely convergent.

$$
\begin{aligned}
\sum_{j=1}^{\infty}\left|L_{j n 0}\right| \sum_{k \mid j} \mu(k) \mid & \leqslant \sum_{j=1}^{\infty}\left|L_{j n 0}\right| \sum_{k \mid j}|\mu(k)| \leqslant \sum_{j=1}^{\infty}\left|L_{j n 0}\right| \tau(j) \\
& \leqslant \sum_{j=1}^{\infty}\left|L_{j n 0}\right| \tau(n j) \leqslant \sum_{j=1}^{\infty}\left|L_{j 0}\right| \tau(j) \\
& \leqslant C_{1} \sum_{j=1}^{\infty} \frac{\tau(j)}{j^{1+\varepsilon}}=C_{1} \sum_{j=1}^{\infty} \frac{1}{j^{1+\varepsilon / 2}} \cdot \frac{\tau(j)}{j^{\varepsilon / 2}} \\
& \leqslant C_{2} \sum_{j=1}^{\infty} \frac{1}{j^{1+\varepsilon / 2}} .
\end{aligned}
$$

Here we denote by $\tau(n)$ the number of the divisors of n and we also use the asymptotic equality $\tau(j)=O\left(j^{j}\right)$, which holds for any positive integer j and any $\delta>0$ (see [7, p. 34]). C_{1} and C_{2} are constants.

Using the presentation (1) we find

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} A_{n} T_{n}(x)=A_{0}+\sum_{n=1}^{\infty}\left(\sum_{k=1}^{\infty} \mu(k) L_{k n 0}\right) T_{n}(x) \\
& =A_{0}+\sum_{j=1}^{\infty} L_{j 0} \sum_{k \mid j} \mu(k) T_{j \mid k}(x)
\end{aligned}
$$

The proof is complete.
Theorem 3. Let $f \in \mathbf{A T}_{\varepsilon}$. The functionals $\left\{M_{n}(f)\right\}_{n=1}^{\infty}$ and A_{0} determine f uniquely. Moreover

$$
\begin{equation*}
f(x)=A_{0}+\sum_{j=1}^{\infty}\left(M_{j}(f)-A_{0}\right) \sum_{k \mid j} v(k) T_{j / k}(x) \tag{17}
\end{equation*}
$$

Proof. Putting $M_{n}:=M_{n}(f)$ and $M_{n 0}:=M_{n}-A_{0}$, for convenience, one may write (12) as

$$
\begin{equation*}
M_{n 0}=\sum_{m=1}^{\infty}(-1)^{m} A_{m n}, \quad n=1,2, \ldots \tag{18}
\end{equation*}
$$

We shall show that the homogeneous system $\sum_{m=1}^{\infty}(-1)^{m} A_{m n}=0$ admits only the trivial solution.

Let M be the least common multiple of the first l positive integers. Then

$$
\begin{aligned}
& 0=\sum_{d \mid M} v(d) \sum_{m=1}^{\infty}(-1)^{m} A_{m d n}=\sum_{j=1}^{\infty} A_{j n} \sum_{\substack{d|M \\
d| j}} v(d)(-1)^{j / d} \\
&=\sum_{j=1}^{1} A_{j n} \sum_{\substack{d|M \\
d| j}} v(d)(-1)^{j / d}+\sum_{j=l+1}^{\infty} A_{j n} \sum_{\substack{d|M \\
d| j}} v(d)(-1)^{j / d} \\
&=\sum_{j=1}^{1} A_{j n} \sum_{d \mid j} v(d)(-1)^{j / d}+\sum_{j=l+1}^{\infty} A_{j n} \sum_{d \mid M}^{d \mid j} \\
&=A_{n}+\sum_{j=i+1}^{\infty} A_{j n} \sum_{d \mid M} v(d)(-1)^{j / d} \\
& d \mid j
\end{aligned}
$$

Hence

$$
\left|A_{n}\right|=\left|\sum_{j=1+1}^{\infty} A_{j n} \sum_{\substack{\left.d\right|^{M} M}} v(d)(-1)^{j / d}\right|
$$

But

$$
\begin{aligned}
\left|\sum_{\substack{d|M \\
d| j}} v(d)(-1)^{j / d}\right| & \leqslant \sum_{\substack{d|M \\
d| j}}|v(d)| \leqslant \sum_{d \mid j}|v(d)|=\sum_{\substack{d \mid j \\
j=2^{u(/ i / r(j)}}}|v(d)| \\
& =\sum_{c=0}^{a(j)} \sum_{d \mid r(j)}\left|v\left(2^{c} d\right)\right|=\sum_{c=0}^{a(j)} 2^{c-1} \sum_{d \mid r(j)}|\mu(d)| \\
& \leqslant 2^{a(j)} \tau(r(j))
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\left|A_{n}\right| & \leqslant \sum_{j=l+1}^{\infty} 2^{a(j)} \tau(r(j))\left|A_{j n}\right| \\
& \leqslant C_{1} \sum_{j=l+1}^{\infty} 2^{a(j)} \tau(r(j)) \frac{1}{\left(2^{a(j)} r(j) n\right)^{1+\varepsilon}} \\
& =\frac{C_{1}}{n^{1+\varepsilon}} \sum_{j=l+1}^{\infty} 2^{-\varepsilon a(j)} \frac{\tau(r(j))}{r(j)^{1+\varepsilon}}
\end{aligned}
$$

Because of the inequality

$$
\sum_{j=1}^{\infty} 2^{-\varepsilon a(j)} \frac{\tau(r(j))}{r(j)^{1+\varepsilon}} \leqslant \sum_{a=0}^{\infty} 2^{-\varepsilon a} \sum_{r=1}^{\infty} \frac{\tau(r)}{r^{1+\varepsilon}}
$$

the series $\sum_{j=1}^{\alpha} 2^{-\varepsilon a(j)} \tau(r(j)) / r(j)^{1+\varepsilon}$ is convergent.
Letting $l \rightarrow \infty$ we obtain that $A_{n}=0$.
So, if the system (18) has a solution it must be unique. We prove next that this solution is given by the expression $A_{n}=\sum_{k=1}^{\infty} v(k) M_{k n 0}$. As in the previous case we show that this series is absolutely convergent. Indeed we have

$$
\left|M_{k n 0}\right| \leqslant \sum_{m=1}^{\infty}\left|(-1)^{m} A_{m k n}\right|=\sum_{m=1}^{\infty}\left|A_{m k n}\right|=\frac{C_{1}}{(k n)^{1+\varepsilon}}
$$

Thus

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|v(k) M_{k n 0}\right| & =\sum_{k=1}^{\infty} 2^{a(k)-1}|\mu(r(k))|\left|M_{k n 0}\right| \\
& \leqslant \frac{C_{1}}{n^{1+\varepsilon}} \sum_{k=1}^{\infty} 2^{a(k)-1} \frac{1}{\left(2^{a(k)} r(k)\right)^{1+\varepsilon}} \\
& =\frac{C_{1}}{n^{1+\varepsilon}} \sum_{k=1}^{\infty} 2^{-\varepsilon u(k)-1} \frac{1}{(r(k))^{1+\varepsilon}} \\
& \leqslant \frac{C_{2}}{n^{1+\varepsilon}} \sum_{a=0}^{\infty} 2^{-c a} \sum_{r=1}^{\infty} \frac{1}{r^{1+\varepsilon}}
\end{aligned}
$$

which yields that $\sum_{k=1}^{\infty} v(k) M_{k n 0}$ is absolutely convergent. Now inserting $\sum_{k=1}^{x} v(k) M_{k n 0}$ in (18) we get

$$
\sum_{m=1}^{\infty}(-1)^{m} \sum_{k=1}^{\infty} v(k) M_{k m n 0}=\sum_{j=1}^{\infty} M_{j n 0} \sum_{k \mid j} v(k)(-1)^{j k}=M_{n 0}
$$

In order to complete the proof we should show that the change of the order of the summation is correct. Let us establish the absolute convergence of the series $\sum_{j=0}^{\infty} M_{j n 0} \sum_{k \mid j} v(k)(-1)^{i / k}$, for example.

$$
\begin{aligned}
\sum_{j=1}^{\infty}\left|M_{j n 0}\right|\left|\sum_{k \mid j} v(k)(-1)^{j / k}\right| & \leqslant \sum_{j=1}^{\infty}\left|M_{j n 0}\right| \sum_{k \mid j}|v(k)| \\
& \leqslant \sum_{j=1}^{\infty}\left|M_{j n 0}\right| 2^{\alpha(j)} \tau(r(j)) \\
& \leqslant \frac{C_{3}}{n^{1+\varepsilon}} \sum_{j=1}^{\infty} 2^{-\varepsilon \alpha(j)} \frac{\tau(r(j))}{r(j)^{1+\varepsilon}}
\end{aligned}
$$

The convergence of the last series was already proved.

Using the presentation (1) we find

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} A_{n} T_{n}(x)=A_{0}+\sum_{n=1}^{\infty}\left(\sum_{k=1}^{\infty} v(k) M_{k n 0}\right) T_{n}(x) \\
& =A_{0}+\sum_{j=1}^{\infty} M_{j 0} \sum_{k \mid j} v(k) T_{j / k}(x)
\end{aligned}
$$

The proof is complete.
Note, also, that considering separately the cases of even and odd n, one can obtain other functionals, as it is done in [1], [3], [5]. For example, the functional $M_{2 n}(f)$ is used for the reconstruction of an even function (see [1, Theorem 4]). Following the proof of Theorem 1, one may get the next known results.

Theorem A. Let $f \in \mathbf{A T}_{c}$. The functionals $\left\{E_{n}(f)\right\}_{n=1}^{\infty}$ and $f(1)$ determine f uniquely.

Theorem B. Let $f \in \mathbf{A U}_{c}$. The functionals $\left\{I_{n}(f)\right\}_{n=1}^{\infty}$ and $f(1)$ determine f uniquely.

We mention these theorems only for completeness. Their proofs may be found in [2], [3], [4].

Next we use a family of functionals, namely $\left\{P_{s, n}(f)\right\}_{n=1}^{\infty}$ for the reconstruction of the function.

ThEOREM 4. Let $f \in \mathbf{A T}_{c}$ and $s \geqslant 2$ be a fixed prime number. The functionals $\left\{P_{s, n}(f)\right\}_{n=1}^{\infty}$ and $f(1)$ determine f uniquely. Moreover

$$
\begin{equation*}
f(x)=f(1)+\sum_{j=1}^{\infty} P_{s, j}(f) \sum_{\substack{k \mid j \\ s \nmid k}} \mu(k)\left(T_{j i k}(x)-1\right) \tag{19}
\end{equation*}
$$

Proof. Consider the system of equations

$$
P_{s, n}=\sum_{n=1}^{\infty} s A_{m n}, \quad\left(P_{s, n}=P_{s, n}(f)\right)
$$

We shall show that the corresponding homogeneous system has only the trivial solution. In order to do this, consider the infinite sequence \mathbf{P} of all prime numbers, from which s is removed.

Let $M=p_{1} p_{2} \cdots p_{l}$ be the product of the first l primes in \mathbf{P}. We have

$$
\begin{aligned}
0 & =\sum_{d \mid M} \mu(d) \sum_{m=1}^{\infty} s A_{m d n}=\sum_{j=1}^{\infty} A_{j m} \sum_{\substack{d|M \\
d| j}} \mu(d) \\
& =\sum_{j=1}^{\infty} A_{j n} \sum_{\substack{d \mid \delta \\
\delta=(j, M)}} \mu(d)=\sum_{\substack{j=1 \\
(j, M)=1}}^{\infty} A_{j n} .
\end{aligned}
$$

Further, the proof follows that one of Theorem 2. Here the solution of the system is obtained in the form

$$
A_{n}=\sum_{k=1}^{\infty} S \mu(k) P_{s, k n}
$$

Now, using (1) we get

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} A_{n} T_{n}(x)=A_{0}+\sum_{n=1}^{\infty}\left(\sum_{k=1}^{\infty} \mu(k) P_{s, k n}\right) T_{n}(x) \\
& =A_{0}+\sum_{j=1}^{\infty} P_{s, j} \sum_{\substack{k \mid j \\
s \nmid k}}^{\infty} \mu(k) T_{j, k}(x)
\end{aligned}
$$

On the other hand

$$
f(1)=A_{0}+\sum_{n=1}^{\infty} A_{n}=A_{0}+\sum_{j=1}^{\infty} P_{s, j} \sum_{\substack{k \mid j \\ s \nmid k}} \mu(k)
$$

and hence

$$
f(x)=f(1)+\sum_{j=1}^{\infty} P_{s . j}(f) \sum_{\substack{k \mid j \\ s \nmid k}} \mu(k)\left(T_{j / k}(x)-1\right)
$$

The proof is complete.
Next we need some new notations and auxiliary propositions.
Let $s \geqslant 2$ be a fixed positive integer. Introduce the following set of positive integers

$$
\mathbf{K}_{\mathbf{s}}:=\left\{\{k s \pm 1\}_{k=1}^{\infty} \bigcup\{1\}\right\} .
$$

In other words $\mathbf{K}_{\mathbf{s}}$ is a union of two arithmetic progressions with difference s. It is not difficult to see that $\mathbf{K}_{\mathbf{s}}$ is closed with respect to multiplication,
i.e. the product of two numbers from $\mathbf{K}_{\mathbf{s}}$ is also its element. For convenience we shall mark m by ~ (i.e. we shall write \tilde{m}) to denote that the positive integer m (which may be presented as $m=k s \pm 1$ for some positive integer k) is considered as an element of $\mathbf{K}_{\mathbf{s}}$.

We say also that \tilde{b} divides \tilde{a} (and denote this by $\tilde{b} \mid \tilde{a}$) if there exists \tilde{c}, such that $\tilde{a}=\tilde{b} \tilde{c}$ (Further, \tilde{c} would be denoted by \tilde{a} / \tilde{b}).

It is easy to see that if $\tilde{a} \in \mathbf{K}_{\mathbf{s}}, \tilde{b} \in \mathbf{K}_{\mathbf{s}}$ and $a / b \in \mathbf{Z}$, then $\tilde{b} \mid \tilde{a}$, i.e. $\tilde{a} / \tilde{b} \in \mathbf{K}_{\mathbf{s}}$ and $\tilde{a} / \tilde{b}=a / b$. Further, for the elements of $\mathbf{K}_{\mathbf{s}}$, we shall consider operation "division" only in $\mathbf{K}_{\mathbf{s}}$.

We call "prime" in K_{s} any element \tilde{m} which has only two divisors from $\mathbf{K}_{\mathbf{s}}$ (namely $\tilde{\mathrm{l}}$ and \tilde{m}). The rest elements (except $\tilde{\mathrm{l}}$) are said to be "composite numbers".

For example:

$$
K_{5}=\{\tilde{1}, \tilde{4}, \tilde{6}, \tilde{9}, \tilde{1}, \tilde{14}, \tilde{16}, \tilde{19}, \tilde{21}, \tilde{24}, \tilde{26}, \ldots\}
$$

The elements $\tilde{4}, \tilde{6}, \tilde{9}, \tilde{1}, \tilde{14}, \tilde{1}, \tilde{2}, \tilde{26}$ have only two divisors. The first composite number is $\widetilde{16}=\tilde{4}^{2}$, and the first composite with different prime divisors is $\widetilde{24}=\tilde{4} \times \widetilde{6}$. Introduce the arithmetic function $\tilde{\mu}$, defined in $\mathbf{K}_{\mathbf{s}}$ by he equalities

$$
\begin{aligned}
\tilde{\mu}(\tilde{\mathbb{1}})=11 \\
\sum_{\tilde{d} \mid \tilde{n}} \tilde{\mu}(\tilde{d})=0, \quad \tilde{n}>\tilde{1}
\end{aligned}
$$

Lemma 1. Let a be a positive integer and $a \equiv \pm 1(\bmod 6)$. If $a=b c$, then $b \equiv \pm 1(\bmod 6)$ and $c \equiv \pm 1(\bmod 6)$.

Proof. Let $b=6 b_{1}+r_{1}$ and $c=6 c_{1}+r_{2}, 0 \leqslant r_{1} \leqslant 5,0 \leqslant r_{2} \leqslant 5$. It is seen from the table that from all combinations for the product $r_{1} r_{2}$, the abovementioned congruence is true only when $r_{1} \equiv \pm 1(\bmod 6)$ and $r_{2} \equiv \pm 1$ $(\bmod 6)$.

	$r_{1}: 1$	2	3	4	5
r_{2}					
1	1	2	3	4	5
2	2	4	0	2	4
3	3	0	3	0	3
4	4	2	0	4	2
5	5	4	3	2	1

The proof is complete.
Next we give a lemma which could be recognized as the Fundamental theorem of arithmetics in \mathbf{K}_{6}.

Lemma 2. Each $\tilde{a} \in \mathbf{K}_{\mathbf{6}}$ has a unique representation as a product of primes up to the order of the factors

$$
\tilde{a}=\tilde{p}_{1} \tilde{p}_{2} \cdots \tilde{p}_{m}
$$

(some of these primes may be equal).
Proof. Prove first the existence. Obviously the existence is clear for all primes of \mathbf{K}_{6} (i.e. $\overline{5}, \overline{7}, \ldots$). Next we proceed by induction. Assume also that the existence holds for all elements of \mathbf{K}_{6}, which do not exceed \tilde{u}. Let \tilde{v} be the next element of \mathbf{K}_{6} (we assume that all elements of the set are ordered by size). We shall prove the existence of primes, whose product is \hat{v}. Choose the least divisor of \tilde{v} from the sequence $\overline{5}, \tilde{7}, \ldots, \tilde{u}, \tilde{v}$. If it is \tilde{v} then \tilde{v} is prime. Otherwise we have $\tilde{v}=\tilde{p} \tilde{q}$, where \tilde{p} is prime and obviously $\tilde{q} \leqslant \tilde{u}$. Then according to the induction hypothesis \tilde{q} and consequently \tilde{v} may be presented as a product of primes.

Now we shall prove the uniqueness of the representation (up to the order of the factors). Suppose that for some $\tilde{a} \in \mathbf{K}_{6}$

$$
\tilde{a}=\tilde{p}_{1} \tilde{p}_{2} \cdots \tilde{p}_{m}=\tilde{q}_{1} \tilde{q}_{2} \cdots \tilde{q}_{n}
$$

where $\tilde{p}_{i}, \tilde{q}_{j}$-are primes in $\mathbf{K}_{\mathbf{6}}$. Consider p_{1} and suppose that it is composite in \mathbf{N}. Then $p_{1}=p_{1}^{\prime} p_{1}^{\prime \prime}$ and we derive from Lemma 1 that $\tilde{p}_{1}^{\prime} \in \mathbf{K}_{6}$ and $\tilde{p}_{1}^{\prime \prime} \in \mathbf{K}_{6}$. This contradicts our assumption that \tilde{p}_{1} is prime in \mathbf{K}_{6}. Hence p_{1} is prime in \mathbf{N}. Using similar arguments we may establish that each of the numbers p_{i}, q_{j} is prime in \mathbf{N}. Then all p_{i} and q_{j} in the equality

$$
p_{1} p_{2} \cdots p_{m}=q_{1} q_{2} \cdots q_{n}
$$

are primes and from the Fundamental theorem of arithmetics we derive the uniqueness (up to the order of the factors).

Lemma 3. For the function $\tilde{\mu}(\tilde{n})$, defined in $\mathbf{K}_{\mathbf{6}}$ the following equalities are true:

$$
\begin{aligned}
& \tilde{\mu}(\tilde{1})=1 ; \\
& \tilde{\mu}(\tilde{n})=0, \quad \text { if } \quad \tilde{p}^{2} \mid \tilde{n}, \quad \tilde{p} \text { is prime; } \\
& \tilde{\mu}(\tilde{n})=(-1)^{m}, \quad \text { if } \tilde{n}=\tilde{p}_{1} \tilde{p}_{2} \cdots \tilde{p}_{m}, \quad \tilde{p}_{i} \text { are distinct primes. }
\end{aligned}
$$

Proof. We may conclude from Lemma 2 that for each $\tilde{n} \in \mathbf{K}_{6}$ there exists a unique representation of the form

$$
\tilde{n}=\tilde{p}_{1}^{a_{1}} \tilde{p}_{2}^{a_{2}} \cdots \tilde{p}_{m}^{a_{m}},
$$

where $\tilde{p}_{i}, i=1,2, \ldots, m$ are primes, $1 \leqslant a_{i}$. Here $a_{i}, i=1,2, \ldots, m$, are the multiplicity of the corresponding prime divisors. The proof goes by induction on \tilde{n}. Obviously, the statement is true for $\tilde{1}$ and all primes. Suppose that it is true also for all numbers of \mathbf{K}_{6}, less than \tilde{n}. It is clear that any divisor \tilde{d} of \tilde{n} has the form

$$
\tilde{d}=\tilde{p}_{1}^{b_{1}} \cdots \tilde{p}_{m}^{b_{m}}, \quad 0 \leqslant b_{i} \leqslant a_{i}
$$

Note, also, that $\tilde{\mu}(\tilde{d}) \neq 0$ only when $b_{i}=1$ for $i=1,2, \ldots, m$. Then

$$
\begin{aligned}
\tilde{\mu}(\tilde{n})= & -\sum_{\substack{\tilde{d} \mid \tilde{\pi} \\
\tilde{d}<\tilde{n}}} \tilde{\mu}(\tilde{d})=-\left(\binom{m}{0}-\binom{m}{1}+\binom{m}{2}-\cdots\right. \\
& \left.+(-1)^{m-1}\binom{m}{m-1}+\varepsilon_{m}\right)
\end{aligned}
$$

where

$$
\varepsilon_{m}= \begin{cases}(-1)^{m}, & \text { if at least one } a_{i} \geqslant 2 \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
\tilde{\mu}(\tilde{n})= \begin{cases}0, & \text { if at least one } a_{i} \geqslant 2 \\ (-1)^{m}, & \text { otherwise }\end{cases}
$$

Denote by $\tilde{\tau}(\tilde{n})$ the number of divisors (in \mathbf{K}_{6}) of \tilde{n}. It is easy to see that $\tilde{\tau}(\tilde{n}) \leqslant \tau(n)$.

Further we shall consider only the case $s=6$, i.e. the set K_{6}.

Theorem 5. Let $f \in \mathbf{A T}_{\varepsilon}$. The functionals $\left\{R_{6, n}(f)\right\}_{n=1}^{\infty}$ and $f(1)$ determine f uniquely. Moreover

$$
\begin{equation*}
f(x)=f(1)+\sum_{j=1}^{\infty} R_{6, j}(f) \sum_{\tilde{k} \mid j} \tilde{\mu}(\tilde{k})\left(T_{j / k}(x)-1\right) \tag{20}
\end{equation*}
$$

(Here the second sum is taken over all divisors of j which are elements of \mathbf{K}_{6}).
Proof. Follow the proof of Theorem 2. From (14) we have the equality

$$
R_{6, n}=\sum_{\tilde{m}=\tilde{1}}^{\infty} A_{\tilde{m} n}, \quad\left(R_{6, n}=R_{6, n}(f)\right)
$$

We shall show that the homogeneous system $\sum_{\tilde{m}=\tau}^{\infty} A_{\tilde{m} n}=0$ admits only the trivial solution.

Let $\tilde{M}=\tilde{p}_{1} \tilde{p}_{2} \cdots \tilde{p}_{l}$ be the product of the first l prime numbers of $\mathbf{K}_{\mathbf{6}}$. Then

$$
\begin{aligned}
0 & =\sum_{\tilde{d} \mid \tilde{M}} \tilde{\mu}(\tilde{d}) \sum_{\tilde{m}=\tilde{\mathrm{I}}}^{\infty} A_{\tilde{m} \tilde{d} n}=\sum_{j=\tilde{i}}^{\infty} A_{\tilde{j} n} \sum_{\substack{\tilde{d}|\tilde{M} \\
\tilde{d}| \tilde{j}}} \tilde{\mu}(\tilde{d}) \\
& =\sum_{\tilde{j}=\tilde{1}}^{\infty} A_{\tilde{j} n} \sum_{\substack{d \mid \bar{\delta} \\
\tilde{\delta}=(\bar{j}, \tilde{M})}} \tilde{\mu}(\tilde{d})=\sum_{\substack{j=\tilde{I} \\
(j, \bar{M})=\tilde{1}}}^{\infty} A_{\tilde{j} n} .
\end{aligned}
$$

Hence

$$
\left|A_{n}\right| \leqslant \sum_{j=\tilde{p_{i}+1}}^{\infty}\left|A_{\tilde{j} n}\right| \leqslant \sum_{j=p_{l+1}}^{\infty}\left|A_{j}\right| .
$$

Letting $l \rightarrow \infty$ we derive that $A_{n}=0$. We used here that there are infinitely many primes (in \mathbf{K}_{6}). This is a consequence of Dirichlet's theorem for the prime numbers in arithmetic progression and from the fact that each prime (in \mathbf{N}), belonging to \mathbf{K}_{6} is prime, also, for \mathbf{K}_{6}. We shall show that $\sum_{\tilde{k}=\overline{1}}^{x} \tilde{\mu}(\tilde{k}) R_{6, \tilde{k} n}$ is a solution of the system.

Since

$$
\left|R_{6, \bar{k} n}\right|=\left|\sum_{\tilde{m}=\overline{\mathrm{I}}}^{\infty} A_{\bar{k} m}\right| \leqslant \sum_{\tilde{m}=\overline{\mathrm{I}}}^{\infty}\left|A_{\bar{k} \dot{m} n}\right| \leqslant \sum_{m=1}^{\infty}\left|A_{k m n}\right|=O(k n)^{-1-\varepsilon}
$$

$$
\sum_{\tilde{m}=1}^{\infty} \sum_{\tilde{k}=\tilde{i}}^{\infty} \tilde{\mu}(\tilde{k}) R_{6, \tilde{k} \dot{m} n}=\sum_{j=\tilde{j}}^{\infty} R_{6, \tilde{j} n} \sum_{\bar{k} \mid \tilde{j}} \tilde{\mu}(\tilde{k})=R_{6, n}
$$

We need only show the absolute convergence of $\sum_{j=1}^{\infty} R_{6, \tilde{j}} \sum_{\tilde{k} \mid \tilde{j}} \tilde{\mu}(\tilde{k})$. We have

$$
\begin{aligned}
\sum_{j=\bar{i}}^{\infty}\left|R_{6 . j n}\right|\left|\sum_{\tilde{k} \mid j} \tilde{\mu}(\tilde{k})\right| & \leqslant \sum_{j=1}^{\infty}\left|R_{6 . j m}\right| \sum_{\tilde{k} \mid, j}|\tilde{\mu}(\tilde{k})| \\
& \leqslant \sum_{j=1}^{\infty}\left|R_{6 . j n}\right| \tilde{\tau}(\tilde{j})\left|\leqslant \sum_{j=1}^{\infty}\right| R_{6, j n} \mid \tau(j) \\
& \leqslant \sum_{j=1}^{\infty}\left|R_{6 . j n}\right| \tau(j n) \leqslant \sum_{j=1}^{\infty}\left|R_{6, j}\right| \tau(j)
\end{aligned}
$$

The convergence of the last series follows from the equality $\left|R_{6, j}\right|=$ $O\left(j^{-1-\varepsilon}\right)$. We obtained

$$
A_{n}=\sum_{\tilde{k}=\tilde{\mathbf{i}}}^{\infty} \tilde{\mu}(\tilde{k}) R_{6, \tilde{k}_{n}} .
$$

Then

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} A_{n} T_{n}(x)=A_{0}+\sum_{n=1}^{\infty}\left(\sum_{\tilde{k}=\tilde{1}}^{\infty} \tilde{\mu}(\tilde{k}) R_{6, \bar{k} n}\right) T_{n}(x) \\
& =A_{0}+\sum_{j=1}^{\infty} R_{6, j} \sum_{\tilde{k} \mid j}^{\infty} \tilde{\mu}(\tilde{k}) T_{j ; k}(x) .
\end{aligned}
$$

Using again

$$
f(1)=A_{0}+\sum_{n=1}^{\infty} A_{n}=A_{0}+\sum_{j=1}^{\infty} R_{6, j} \sum_{\tilde{k} \mid j} \tilde{\mu}(\tilde{k})
$$

we finally get

$$
f(x)=f(1)+\sum_{j=1}^{\infty} R_{6, j}(f) \sum_{\tilde{k} \mid j} \tilde{\mu}(\tilde{k})\left(T_{j j k}(x)-1\right)
$$

It is easy to observe that $E_{n}(f)=P_{2, n}(f)$, i.e. Theorem 4 includes as a special case Eterman's result. Theorem 5 also may be considered as a generalization of this result because of the following. The presented proof may be applied for each particular value of s for which $|\tilde{\mu}(\tilde{n})| \leqslant 1$. These values are $s=2, s=3, s=4, s=6$. It is not difficult to see as well that $E_{n}(f)=\frac{1}{2} R_{2, n}(f)=R_{4, n}(f)$. In the study of other cases one needs more precise estimation for the function $\tilde{\mu}(\tilde{n})$.

Acknowledgments

The author is grateful to Professor B. Bojanov for suggestions and guidance in preparing this paper.

References

1. I. Borosh and C. K. Chui, On characterization of functions by their Gauss-Chebyshev quadratures, SIAM J. Math. Anal. 10 (1979), 532-541.
2. L. Brutman, Alternating trigonometric polynomials, J. Approx. Theory 49 (1987), $64-74$.
3. I. I. Eterman, On the question of reconstruction of a function from a certain characteristic sequence, Izv. Visšh. Učebn. Zaved. Mat. 2 (1966), 148-157. [in Russian]
4. K. G. Ivanov, T. J. Rivlin, and E. B. Saff, The representation of functions in terms of their divided differences at the Chebyshev nodes and roots of unity, J. London Math. Soc. 42 (1990), 309-328.
5. C. A. Michelli and T. J. Rivlin, Túran formulae and highest precision quadrature rules for Chebyshev coefficients, IBM J. Res. Develop. 16 (1972), 372-379.
6. T. J. Rivlin, "Chebyshev Polynomials," 2nd ed., Wiley, New York, 1990
7. I. M. Vinogradov, "Fundamentals of Number Theory," 7th ed., Nauka. Moscow, 1965. [in Russian]

[^0]: * Supported by the Bulgarian Ministry of Education and Science under Grant MM-15.

